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Scale-free behavior and universality in random fragmentation and aggregation
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Two distinct mechanisms underlying the existence of power-law distributions are presented: the distribution
is stationary under the process of merging and splitting of classes and the distribution of the entities under
study is invariant under changes of the classification scheme. We provide an explanation for the ubiquitous
inversen relationship in the species abundance relationship in ecology and the 1/n2 distribution of company
sizes based on the minimum impact principle.
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Scale-free power-law distributions are observed co
monly @1–8# and there have been many efforts to underst
their ubiquity. The primary focus of our paper is to elucida
two mechanisms for understanding the origins of power-
behavior. The first arises from a generalization of the Smo
chowski equation@9#, which has been previously studied
the context of random fragmentation and agglomeration@10–
16# and in the formation of groups of animals@17#. Such
studies of rupture and aggregation have applications in c
densed matter physics, statistical physics, and cosmo
and it is known that they can produce power-law distrib
tions. We seek to describe mergers and spin-offs in, sa
world of companies, and show numerically and analytica
that one obtains, in steady state, a stable, nontrivial, fi
probability distribution of company sizes with nonunivers
power-law behavior.

A system at a critical point@3# is characterized by scal
invariance leading to power-law behavior and looks mu
the same independent of the resolution with which you vi
it. Such a system is well defined and there is no subjecti
in measuring its attributes. In contrast, we show that, in s
ations in which there is some subjectivity in the categori
tion, the very fact that a consistent pattern is observed
robust manner imposes a strong constraint on the natur
the distribution and implies that the underlying pattern e
hibits algebraic behavior. We call this second mechanism
principle of recategorization invariance, which we illustra
with the species abundance relationship in ecology.

Finally, we present a scaling analysis@3#, which together
with a minimum impact principle is shown to lead to distin
universal @3# power-law relationships, without any fine
tuning of parameters@2#, in the company size distribution
and in ecology in excellent accord with data@18–21#.

We have performed numerical simulations to determ
the distributions of company sizes@18# after a series of splits
and mergers and, in all cases in which stationarity is attain
a power-law distribution of company sizes is obtained,
with exponents whose values depend on the rules emplo
The number of companies,s(n) dn, with number of employ-
ees betweenn andn1dn is found to scale asn2u, with the
power-law behavior being cut off for sufficiently large valu
of n.
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In a split, a randomly chosen company is divided in
two, preserving the total number of people. In a merger,
of the people from two randomly chosen different compan
are combined into a single company. Therefore, the proba
ity that two companies of sizess1 and s2 participate in a
merging event is proportional to the product of the number
companies of sizess1 ands2. Iterations consisting of a single
split, with probabilityp, or a single merger, with probability
12p, are performed until the distribution of companie
reaches a statistical steady state. In principle, one could
sider the general situation in which the probability of spl
ting and merging depends on the sizes of the two parts
volved in the event. The corresponding equations can
written down, but it is hard to obtain an analytical solutio
We restrict our analysis below to some special cases
which explicit results can be obtained. The common featu
of the solutions we find are suggestive of their generality

We worked with two different types of splits. The firs
random split, consists of selecting a company at random
splitting it into two companies, one with a size random
selected between zero and the size of the initial compa
and the other with the remainder of the people. The sec
split type, Equal split, consists of selecting a company
random and splitting it into two of exactly half the size of th
original. In both cases, there is no minimum company s
and the size is not required to be an integer. Similarly,
have also considered two types of mergers. First, rand
merger, consists of selecting two companies at random
replacing them with a single company with a size equal
the sum of the two original companies. The second ty
closest merger, consists of selecting one company at ran
and then merging it with the company closest to it in siz
We choose a maximum company sizeM so that mergers
which lead to companies with more thanM individuals are
not permitted. This could model the action of an antitru
authority. Note that the overall population is finite~the total
number of workers in the case of companies, for example! so
that mergers leading to companies larger than the ove
population cannot take place.

The master equation for the random-splitting–rando
merging process is
©2004 The American Physical Society23-1
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si 11~n!2si~n!5pS 2si~n!12E
n

`si~m!

m
dmD 1~12p!

3S E
0

n

si~m!si~n2m!dmD 2~12p!

3S 2si~n!E
0

M2n

si~m!dmD . ~1!

The first two terms on the right-hand side represent the
and the gain due to splitting while the third and fourth ter
describe the gain and the loss due to merging.

On postulating a power-law form fors(n) in the station-
ary situation and equating terms in leading order, one obt
the exponent

u5
2p

22p
. ~2!

Note that whenp.2/3, u.1 and there is no stationary solu
tion. Similarly, for the equal-splitting–random-merging cas
the term 2*n

`@si(m)/m#dm in Eq. ~1! is replaced by
4si(2n), leading to

u521 lnS p

22pD / ln~2!. ~3!

Finally, for the random-splitting–closest-merge case,
master equation is

si 11~n!2si~n!5pS 2si~n!12E
n

`si~m!

m
dmD 1~12p!

3@ 1
2 si~n/2!22si~n!#, ~4!

leading to thep-u relation:

p5
222u21

112/u22u21
. ~5!

We have verified these predictions with computer simu
tions. Some representative cases are shown in Fig. 1.

The framework of the Smoluchowski equation@9# is also
relevant for understanding the principle of recategorizat
invariance. In order to study distributions of quantities
interest, one needs to categorize or bin them. Often, this
be done in an objective manner but there are situation
which this is not possible. For example, if one wished
study the distribution of papers published in scientific jo
nals in various subject categories or the distribution
people in various employment sectors, different analysts
the same data could choose distinct categorization sche
and could presumably get different distributions. If the d
tributions are indeed qualitatively different, then their beha
ior is not robust and depends on the specific categoriza
scheme. More interestingly, if the distributions are in t
same class or equivalently are described by the same fa
of mathematical functions independent of the spec
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scheme employed, it would be natural to think of this as
pattern worth understanding.

Let us illustrate recategorization invariance with a fra
mentation example relevant to ecology. How might one c
egorize organisms into species? There is clearly no uni
answer to this question@22–24# except that, within any cat-
egorization, organisms belonging to a given species ough
be closer to each other than to organisms in other specie
order to simplify the situation and derive the consequen
of this flexibility in classification, we envision starting with
coarse definition of the species and ask how the distribu
evolves on recategorizing the organisms into species wi
finer distinction between them. In other words, we consi
carrying out a simple splitting procedure@25# in which, for
example, each species is divided into two and the inte
population in the original species~measured in convenien
units so that, for example, the unit of population correspo
to extinction threshold! is divided randomly, for simplicity,
into positive integer populations of two new species.

We do not concern ourselves with species having a po
lation of just 1—such a species cannot, of course, be s
any further and may be thought of as one that goes extinc
robust law or a consistent pattern is one that ought to
observed independently of the precise definition of the s
cies. When the total number of species is large, our sim
tions show that the splitting procedure is well described
the mean field recursion relation forsi 11(n), the number of
species with a population ofn at the (i 11)th iteration:

si 11~n!52 (
m.n

si~m!

m21
. ~6!

The stable fixed probability distribution of this recursio
is one in which each organism belongs to a distinct spec
Any initial distribution will eventually reach this stable dis

FIG. 1. Plot ofs(n) vs company sizen for three distinct split-
merger simulations;s(n)dn is the fraction of companies of siz
~number of employees! betweenn andn1dn. All three cases were
run with 20 companies and a total of 200 000 employees. The v
of p in each case is 1/2 and the observed exponents~0.66, 0.42, and
1.0! are in good accord with the analytic predictions of 2/3, 0.41
and 1 for the random-split–random-merge, equal-split–rando
merge, and the random-split–closest-merge cases, respectively
3-2
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tribution after infinite iterations of the splitting process. A
other fixed probability solution~albeit unstable! to Eq. ~6! is
a power-law distribution. This follows readily from consid
ering an approximate integral representation of Eq.~6! writ-
ten as si 11(n)52*n

`@si(m)/m#dm and noting thatsi(m)
;m2u leads tosi 11(n);n2u.

Figure 2 shows the results of integrating the recurs
relation for three commonly studied classes of distributio
@19,20#, the canonical log-normal, the broken stick, and
power-law form. The power-law distribution retains the mo
fidelity to its functional form on successive iterations. T
canonical log-normal form is somewhat robust under ite
tion with just a weak variation in the adjustable parame
Note, however, that a power-law is a reasonable approxi
tion to the tail of a canonical log-normal distribution.

It is important to emphasize that the species abunda
relationship arises from evolution and natural selection,
the observed regularities do not derive from the way
which one categorizes the species. Instead, the distribut
which have been commonly put forward to characterize
relative abundance of species~the log-normal and the power
law! are invariant under recategorization of the quantit
being studied and are therefore consistent with the rob
observability requirement discussed here.

Our studies of successive splitting and mergers and
principle of invariance under recategorization both lead
power-law distributions but with no unique exponent. W
now turn to a scaling analysis@3# of such distributions. LetN
represent the total number of individuals across all spec

N5E
1

`

s~n!n dn. ~7!

Our simulations have shown that the number of compan
~species! of sizen ~with n individuals!, s(n;N), is a homo-
geneous function of the type

s~n;N!;n2uF„n/n0~N!…. ~8!

The scaling functionF(x) approaches a constant value forx
small compared to 1 and becomes zero whenx is large com-
pared to 1, son0 is the upper limit cutoff of the algebrai
behavior ofs(n;N). A sample of the results of our simula
tions is shown in the collapse plot ofnus(n;N) versus
n/n0(N) in Fig. 3. This scaling form is well captured by th
Fisher log series@21# which states that the number of speci
with a populationn is proportional toe2n/n0/n.

The total number of individuals is given by

N5E
1

`

s~n!n dn;n0
22uE

1/n0

`

x12uF~x!dx. ~9!

In order forn0 to diverge asN→` and the scaling regime to
be extended indefinitely,u<2. The total number of compa
nies ~species! is equal to

C5E
1

`

s~n!dn;n0
12uE

1/n0

`

x2uF~x!dx. ~10!
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FIG. 2. Plot of the original distributions(n) and those obtained
after the first four iterations,si(n), i 51, . . . ,4, of thesplitting
procedure described in Eq.~6!. The distributions are depicted b
circles, squares, diamonds, triangles, and asterisks, respect
The three panels refer to the three initial distributions discusse
the text:s(n);1/n if 1<n<nmax, 0 otherwise~power-law, upper

panel!; s(n);e2[ log10(n/m)] 2/(2t2) ~log normal, middle panel!; s(n)
;(12n/nmax)

stot22 ~broken stick, lower panel!, wherem, t, stot ,
andnmax are constants.
3-3
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There are two distinct scenarios that one needs to consid
one requires that the number of companies~species! becomes
infinitely large whenn0 and the number of individuals di
verge one obtains a more restricted inequality,u<1. This is
indeed the case in ecology in which the number of disti
species diverges when the number of individuals diverg
Of course, when there is no such requirement and an infi
number of individuals can be accommodated in a finite nu
ber of companies, the weaker inequality foru holds.

FIG. 3. Scaling collapse plot for the random-split–rando
merger case with equal probability for split or merger (p51/2) for
differing numbers of companiesC and total employeesN. For the
scaling cutoffn0 we used the mean company size,N/C. The expo-
nent here is 2/3 as predicted in Eq.~2!. We have confirmed tha
similar scaling, but with different exponents in accord with the th
oretical predictions, is found for other values ofp and for other
split-merger scenarios.
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In any case, one finds thatn0 is simply proportional to the
average company size~mean species abundance!, N/C, and
that

C;N(12u)/(22u). ~11!

This leads to the result

DC;N21/(22u)DN, ~12!

which quantifies the increase in the number of compan
~species! due to a small increase in the total number of in
viduals. In a free market society or in an ecosystem in wh
the biodiversity is maximized, one expects that the impact
the number of companies~species! is minimum when one
introduces a small number of additional individuals. Th
follows from the observation that a large impact on the nu
ber of companies~or species! would imply that the economy
~ecosystem! is not optimized for maximal profit~biodiver-
sity!. On minimizingDC subject to the constraints onu, we
find that the optimal value ofu is given by

u51 or 2. ~13!

It is remarkable that this drive towards optimality leads
the observed 1/n or 1/n2 dependencies in the species abu
dance relationship in ecology and in the company size
tribution, respectively. These two distinct universality class
correspond to the exponent being at the edge of the allo
range.
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